本文共 4053 字,大约阅读时间需要 13 分钟。
Cartopy 是为了向 Python 添加地图制图功能而开发的扩展库。该项目致力于以 matplotlib 包为基础,用简单直观的方式操作各类地理要素的成图。Cartopy 官网的画廊页面已经提供了很多绘图的例子,它们和官方文档一起,是学习该工具的主要材料。
本图使用的 IGS 核心站与 MGEX 项目站点,及其坐标均来自 IGS 网站。我已经将其整理成为 igs-core 和 mgex 两个 CSV 文件,你可以直接下载。
IGS 核心站与 MGEX 站点分布图
import numpy as npimport matplotlib.pyplot as pltimport cartopy.crs as ccrsimport cartopy.feature as cfeature# Load the coordinate of IGS Core & MGEX sites, The CSV files are# exported from: http://www.igs.org/networkigs_core = np.recfromcsv('igs-core.csv', names=True, encoding='utf-8')mgex = np.recfromcsv('mgex.csv', names=True, encoding='utf-8')fig = plt.figure(figsize=[9, 6])# Set projectionax = plt.axes(projection=ccrs.Robinson())# Add ocean and landax.add_feature(cfeature.LAND)ax.add_feature(cfeature.OCEAN)# Add MGEX & IGS core sitesax.plot(mgex['longitude'], mgex['latitude'], 'o', color='tomato', label='MGEX', transform=ccrs.Geodetic())ax.plot(igs_core['longitude'], igs_core['latitude'], '*', color='darkmagenta', label='IGS Core', transform=ccrs.Geodetic())# Plot gridlinesax.gridlines(linestyle='--')# Set figure extentax.set_global()# Set legend locationplt.legend(loc='lower right')# Show figureplt.show()
PS:如有需要Python学习资料的小伙伴可以加下方的群去找免费管理员领取
可以免费领取源码、项目实战视频、PDF文件等
这里使用的 IGS 站点坐标数据同样来自 IGS 网站。我已将其整理成一个 CSV 格式的文件:euro-igs,你可以直接下载使用。这里使用 matplotlib.tri 中的 Triangulation 来根据输入的点位坐标来创建 Delaunay 三角网,然后使用 plt.triplot() 方法绘制。
GNSS 控制网
import numpy as npimport matplotlib.pyplot as pltimport matplotlib.tri as triimport cartopy.crs as ccrsimport cartopy.feature as cfeature# Load coordinate of the IGS sites in Europe, this CSV file is# exported from: http://www.igs.org/networkigs_sites = np.recfromcsv('euro-igs.csv', names=True, encoding='utf-8')# Generate Delaunay trianglestriangles = tri.Triangulation(igs_sites['longitude'], igs_sites['latitude'])fig = plt.figure(figsize=[6, 8])# Set projectionax = plt.axes(projection=ccrs.LambertConformal(central_latitude=90, central_longitude=10))# Add ocean, land, rivers and lakesax.add_feature(cfeature.OCEAN.with_scale('50m'))ax.add_feature(cfeature.LAND.with_scale('50m'))ax.add_feature(cfeature.RIVERS.with_scale('50m'))ax.add_feature(cfeature.LAKES.with_scale('50m'))# Plot trianglesplt.triplot(triangles, transform=ccrs.Geodetic(), marker='o', linestyle='-')# Plot gridlinesax.gridlines(linestyle='--')# Set figure extentax.set_extent([-10, 30, 30, 73])# Show figureplt.show()
板块构造理论将地球的岩石圈分为十数个大小不等的板块。本图使用的 Nuvel 板块边界数据来自 EarthByte 网站,我已经将其整理为一个压缩文件,你可以直接下载使用。
Nuvel 板块分布图
import numpy as npimport matplotlib.pyplot as pltimport cartopy.crs as ccrs# The plate boundary filesfiles = ['African.txt', 'Antarctic.txt', 'Arabian.txt', 'Australian.txt', 'Caribbean.txt', 'Cocos.txt', 'Eurasian.txt', 'Indian.txt', 'Juan.txt', 'Nazca.txt', 'North_Am.txt', 'Pacific.txt', 'Philippine.txt', 'Scotia.txt', 'South_Am.txt']# Read boundaries into numpyborders = []for f in files: border = np.genfromtxt(f, names=['lon', 'lat'], dtype=float, comments=':') borders.append(border)# Plate namesplates = ['African', 'Antarctic', 'Arabian', 'Australian', 'Caribbean', 'Cocos', 'Eurasian', 'Indian', 'Juan', 'Nazca', ' North\nAmerican', 'Pacific', 'Philippine', 'Scotia', ' South\nAmerican']# Central point for every plate, just for text positioningcentral = [(17, -5), (90, -80), (40, 21), (120, -28), (270, 12), (260, 6), (60, 50), (70, 13), (230, 45), (260, -21), (250, 36), (190, 0), (123, 17), (304, -59), (315, -27)]# Start plotfig = plt.figure(figsize=(12, 7))ax = plt.axes(projection=ccrs.Mollweide(central_longitude=120))# Plot a image as backgroundax.stock_img()# Plot boundariesfor plate, center, border in zip(plates, central, borders): ax.plot(border['lon'], border['lat'], color='coral', transform=ccrs.Geodetic()) ax.text(center[0], center[1], plate, transform=ccrs.Geodetic())plt.show()
本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。
以下文章来源于EasyShu ,作者姜英明
转载地址:http://rsioz.baihongyu.com/